• Categories
  • 2586
    723
    487
    455
    412
    174
    127
    95
    49
    48
    22
    18
    11
    10
    5
    487
    18
    49
    412
    127
    11
    22
    723
    10
    95
    455
    2586
    5
    174
    48

Selling to

  • 0
  • 0
  • 7
  • 0
  • 0
  • 0
  • 0
  • 8
  • 6
  • 90
  • 22
  • 2
  • 5
  • 7
  • 10
  • 5
  • 0
  • 14
  • 0
  • 0
  • 0
  • 0
  • 1
  • 1
  • 0
  • 28
  • 0
  • 7
  • 1
  • 0
  • 0
  • 6
  • 0
  • 80
  • 0
  • 0
  • 0
  • 6
  • 2664
  • 6
  • 0
  • 0
  • 7
  • 0
  • 6
  • 0
  • 5
  • 9
  • 0
  • 0
  • 10
  • 0
  • 6
  • 3
  • 8
  • 0
  • 2
  • 0
  • 0
  • 3
  • 0
  • 1
  • 0
  • 10
  • 61
  • 0
  • 0
  • 0
  • 2
  • 255
  • 2
  • 22
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 30
  • 9
  • 0
  • 875
  • 17
  • 3
  • 0
  • 3
  • 2
  • 112
  • 0
  • 92
  • 3
  • 1
  • 7
  • 0
  • 0
  • 1
  • 0
  • 0
  • 2
  • 0
  • 0
  • 0
  • 2
  • 8
  • 5
  • 1
  • 1
  • 0
  • 0
  • 18
  • 0
  • 0
  • 1
  • 0
  • 0
  • 0
  • 0
  • 13
  • 0
  • 0
  • 1
  • 1
  • 1
  • 6
  • 0
  • 2
  • 0
  • 0
  • 0
  • 1
  • 46
  • 7
  • 0
  • 14
  • 34
  • 0
  • 5
  • 0
  • 26
  • 0
  • 1
  • 0
  • 1
  • 0
  • 0
  • 0
  • 9
  • 27
  • 15
  • 1
  • 1
  • 5
  • 9
  • 0
  • 0
  • 0
  • 0
  • 0
  • 1
  • 0
  • 8
  • 1
  • 5
  • 1
  • 0
  • 16
  • 0
  • 2
  • 7
  • 0
  • 0
  • 36
  • 15
  • 0
  • 85
  • 4
  • 0
  • 0
  • 11
  • 36
  • 0
  • 68
  • 0
  • 1
  • 12
  • 0
  • 0
  • 0
  • 0
  • 3
  • 76
  • 0
  • 0
  • 0
  • 6
  • 38
  • 83
  • 523
  • 0
  • 0
  • 0
  • 1
  • 24
  • 0
  • 0
  • 0
  • 2
  • 0
  • 0
  • 7
  • 0
  • 0
  • 0
  • 0
  • 8
  • 6
  • 90
  • 22
  • 2
  • 5
  • 7
  • 10
  • 5
  • 0
  • 14
  • 0
  • 0
  • 0
  • 0
  • 1
  • 1
  • 0
  • 28
  • 0
  • 7
  • 1
  • 0
  • 0
  • 6
  • 0
  • 80
  • 0
  • 0
  • 0
  • 6
  • 2664
  • 6
  • 0
  • 0
  • 7
  • 0
  • 6
  • 0
  • 5
  • 9
  • 0
  • 0
  • 10
  • 0
  • 6
  • 3
  • 8
  • 0
  • 2
  • 0
  • 0
  • 3
  • 0
  • 1
  • 0
  • 10
  • 61
  • 0
  • 0
  • 0
  • 2
  • 255
  • 2
  • 22
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 30
  • 9
  • 0
  • 875
  • 17
  • 3
  • 0
  • 3
  • 2
  • 112
  • 0
  • 92
  • 3
  • 1
  • 7
  • 0
  • 0
  • 1
  • 0
  • 0
  • 2
  • 0
  • 0
  • 0
  • 2
  • 8
  • 5
  • 1
  • 1
  • 0
  • 0
  • 18
  • 0
  • 0
  • 1
  • 0
  • 0
  • 0
  • 0
  • 13
  • 0
  • 0
  • 1
  • 1
  • 1
  • 6
  • 0
  • 2
  • 0
  • 0
  • 0
  • 1
  • 46
  • 7
  • 0
  • 14
  • 34
  • 0
  • 5
  • 0
  • 26
  • 0
  • 1
  • 0
  • 1
  • 0
  • 0
  • 0
  • 9
  • 27
  • 15
  • 1
  • 1
  • 5
  • 9
  • 0
  • 0
  • 0
  • 0
  • 0
  • 1
  • 0
  • 8
  • 1
  • 5
  • 1
  • 0
  • 16
  • 0
  • 2
  • 7
  • 0
  • 0
  • 36
  • 15
  • 0
  • 85
  • 4
  • 0
  • 0
  • 11
  • 36
  • 0
  • 68
  • 0
  • 1
  • 12
  • 0
  • 0
  • 0
  • 0
  • 3
  • 76
  • 0
  • 0
  • 0
  • 6
  • 38
  • 83
  • 523
  • 0
  • 0
  • 0
  • 1
  • 24
  • 0
  • 0
  • 0
  • 2
  • Capacity
  • 2551
  • 3351
  • 2373
  • 2441
  • 2551
  • 3351
  • 2373
  • 2441
  • Product Certificates
    Solar
0 Suppliers

Welcome to our premier destination for transportation and automotive products! If you're in search of high-quality, reliable products to enhance your vehicle or streamline your transportation needs, you've come to the right place. Cautop.com is dedicated to providing a comprehensive range of top-notch transportation and automotive products, catering to enthusiasts, professionals, and anyone with a passion for vehicles. CAUTOP is a technology [...]

  • Battery Chargers, Solar Flood Light, Solar Traffic Signs, Solar Water Pump
  • United States
  • United States

We are a designer, manufacturer and supplier of professional, commercial grade, solar LED lightings systems. We offer many different types of lighting fixtures including solar street lights, solar sign lights, solar parking lot lights, solar billboard lights, solar bollard lights, and much more. We also offer custom lighting solutions and solar power systems too. Offices and warehouses in the USA and United Kingdom. Worldwide shipping available.

  • Solar Generator, Solar Street Light, Solar Flood Light
  • United States
  • United States

At Greenshine New Energy, we illuminate the world with a commitment to innovation and sustainability. Specializing in the development and manufacturing of tailored solar outdoor LED lighting systems, our mission is to provide cutting-edge solutions for a diverse range of lighting applications. With a global footprint spanning over 5000 installations, Greenshine has emerged as a beacon of excellence in the solar lighting industry. Our seasoned [...]

  • Solar Street Light, Solar Flood Light
  • United States
  • United States

United States

The Solar Potential of USA

According to a 1998 report by the United States Department of Energy, it has been discovered that available domestic solar energy, including biomass, was technically accessible regardless of cost amounted to 586,687 Quadrillion BTUs (Quads). Of that number, 95% was biomass. Coal represented the second largest resource, with 38,147 Quads. Predictions of how much solar power was economically possible to collect added up to 352 quads, compared with 5,266 quads from coal.

All the estimations that were used in the report were based on a prediction that the price of a barrel oil would become $38 in 2010. Additionally, they were also based on multiplied annual renewable resources by 30 for comparison with non-renewable resources. In 2007, the total annual energy consumption of the United States was about 100 Quads, which was less than 0.5% of what is theoretically available from sunlight.

Moreover, in 2012, a report from the National Renewable Energy Laboratory (NREL) described the technically available renewable energy resources for each state. In addition to that, the report estimated that urban utility-scale photovoltaics could supply 2,232 TWh per year, rural utility-scale PV 280,613 TWh per year, rooftop PV 818 TWh per year, and CSP 116,146 TWh per year. All these amounted for a total of almost 400,000 TWh per year, which was 100 times the current consumption of 3,856 TWh in 2011. For comparison, at the time, onshore wind potential was estimated at 32,784 TWh per year, offshore wind at 16,976 TWh per year, and the total available from all renewable resources was estimated at 481,963 TWh per year.

 

United States Government Support

A complete list of incentives can be found at the Database of State Incentives for Renewable Energy (DSIRE). A lot of solar power systems are grid-connected and use net metering laws to allow the use of electricity in the evening that was generated during the daytime. New Jersey is the state with the least restrictive net metering law while California is the one that has the most number of homes that have solar panels installed.

Many were installed because of the million solar roofs initiative, which entails a vision introduced back in 2007 where solar PV panels are to be installed on an additional million rooftops of home or businesses in the state of California by 2018.

In some states, like Florida, solar power is subject to legal restrictions that discourage its use.

Federal Tax Credit

The federal tax credit for solar was extended for eight years as part of the financial bailout bill, H.R. 1424, until the end of 2016. It was predicted that this will create about 440,000 jobs and 28 GW of solar power. Additionally, it was also predicted that this will lead to a $300 billion market for solar panels. This prediction did not take into account the removal of the $2,000 cap on residential tax credits at the end of 2008.

Moreover, a 30% tax credit is available for residential and commercial installations. For 2009 through 2011, this was a 30% grant instead of a tax credit, and at the time, it was known as the 1603 grant program.

The federal Residential Energy Efficient Property Credit, an income tax credit on IRS Form 5695, for residential PV and solar thermal was extended in December 2015 to remain at 30% of system cost (parts and installations) for systems that are put into service by the end of 2019, then 26% until the end of 2020, and then 22% until the end of 2021. This applies to a taxpayer’s principal and/or second residences, but this can’t be applied to a property that is rented out. There is no maximum cap on the credit, and the credit can be applied toward the Alternative Minimum Tax. Any excess credit (greater than that year’s tax liability) can be rolled into the following year.

The solar industry and utilities clashed extensively on renewal, but the solar industry won. The renewal is expected to add $38 billion of investment for 20 GW of solar.

Section 1603 Grants

President Barack Obama’s stimulus bill in 2009 created a program known as Section 1603 grants. This program was designed so as to give federal grants to solar companies for 30% of investments into solar energy. Since 2009, the federal government has given solar companies $25 billion in grant money through this program. However, the Section 1603 grant program expired in 2011.

The United States Treasury Department has been investigating solar companies for potential fraud since 2013. The department promised a report by June 2015, but the report had not been released as of 2016.

Solar America Initiative

The United States Department of Energy (DOE) announced on September 29, 2008, that it will invest $17.6 million, subject to annual appropriations, in six company-led, early-stage PV projects under the Solar America Initiative’s “PV Incubator” funding opportunity. The PV Incubator project is designed to fund prototype PV components and systems with the goal of moving them through the commercialization process by 2010. The 2008 award is the second funding opportunity released under the PV Incubator project. With the cost-share from the industry, which is at least 20%, up to $35.4 million would be invested in these projects. These projects would run for 18 months and are subcontracted through DOE’s National Renewable Energy Laboratory.

Most of the projects were to receive up to $3 million in funding, except Solasta and Spire Semiconductor which would receive up to $2.6 million and $2.97 million, respectively. Some of the projects under this initiative include:

  • Massachusetts-based 1366 Technologies developing a new cell architecture for low-cost, multi-crystalline silicon cells, which will enhance cell performance through improved light-trapping texturing and grooves for self-aligned metallization fingers
  • California’s Innovalight using ink-jet printing to transfer their “silicon ink” onto thin-crystalline silicon wafers so as to produce high-efficiency and low-cost solar cells and modules
  • Skyline Solar, also in California, developing an integrated, lightweight, and single-axis tracked system that reflects and concentrates sunlight over 10 times onto silicon cells
  • Solasta, in Massachusetts, working on a novel cell design that increases currents and lowers materials cost
  • Solexel, another California-based company, commercializing a disruptive, 3D high-efficiency monocrystalline silicon cell technology that dramatically reduces manufacturing cost per watt
  • Spire Semiconductor in New Hampshire developing three-junction tandem solar cells that better optimize the optical properties of their device layers. This company is targeting cell efficiencies over 42% using a low-cost manufacturing method.

The PV Incubator project is part of the Solar America Initiative (SAI), which plans to make solar energy cost-competitive with conventional forms of electricity by 2015 (grid parity).

The U.S. Department of Energy Solar Energy Technology Program (SETP) will achieve the goals of the SAI through partnerships and strategic alliances by focusing mainly on four areas. These are:

  • Market Transformation: activities that address marketplace barriers and offer the chance for market expansion
  • Device and Process Proof of Concept: R&D activities addressing novel devices or processes with a potentially significant performance or cost advantages
  • Component Prototype and Pilot-Scale Production: R&D activities emphasizing the development of prototype PV components or systems that are produced at pilot-scale with demonstrated cost, reliability, or performance advantages
  • System Development and Manufacturing: collaborative R&D activities among industry and university partners to develop and improve solar energy technologies

Another thing that is a part of the Solar America Initiative is the Solar America Showcase. For this activity, preference is given to large-scale, highly visible, and highly replicable installations that involve cutting-edge solar technologies or novel applications of solar.

SunShot Initiative

Announced by the Department of Energy in 2011, the SunShot Initiative aims to reduce the cost of solar power by 75% from 2010 to 2020. In great detail, this initiative’s goals are as follows:

  • Residential system prices reduced from $6/W to $1.50/W
  • Commercial system prices reduced from $5/W to $1.25/W
  • Utility-scale system prices reduced from $4/W to $1/W (CSP, CPV, and PV)

Additionally, the Department of Energy announced a $29 million investment in four projects that would help advance affordable and reliable clean energy for American families and businesses. The $29 million would be separated into two investments:

  • $21 million investment over five years to design plug-and-play PV systems that can be purchased, installed, and operational in one day
  • $8 million investment in two projects to help utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S. solar energy plants

Other projects under the SunShot Initiative are the following:

  • Fraunhofer USA’s Center for Sustainable Energy Systems in Cambridge, Massachusetts developing PV technologies that allow homeowners to easily select the right solar system for their house and install, wire and connect to the grid
  • North Carolina State University leading a project to create standard PV components and system designs that can adapt simply to any residential roof and can be installed and connected to the grid quickly and efficiently
  • IBM Thomas J. Watson Research Center in Armonk, New York leading a new project based on the Watson computer system that uses big data processing and self-adjusting algorithms to integrate different prediction models and learning technologies

All these projects are working with the Department of Energy and the National Oceanic and Atmospheric Association to improve the accuracy of solar forecasts and share the results of this work with industry and academia.

State and Local

There have been numerous instances throughout the years that showcase the efforts that state and local government officials have undergone to make solar possible. The following are the most well-known of these instances:

  • Governor Jerry Brown has signed legislation requiring California’s utilities to get 50% of their electricity from renewable energy sources by the end of 2030.
  • The San Francisco Board of Supervisors passed solar incentives of up to $6,000 for homeowners and up to $10,000 for businesses. Applications for the program started on July 1, 2008. In April 2016, they passed a law that requires all new buildings below 10 stories to have rooftop solar panels. This made San Francisco the first major U.S. city to do so.
  • In 2008, Berkeley initiated a revolutionary pilot program where homeowners are able to add the cost of solar panels to their property tax assessment and pay for them out of their electricity cost savings. In 2009, over a dozen states passed legislation allowing property tax financing. All in all, 27 states offer loans for solar projects.
  • The California Solar Initiative has set a goal to create 3,000 MW of new, solar-produced electricity by 2016.
  • New Hampshire has a $3,750 residential rebate program for up to 50% of system cost for systems less than 5 kWp ($6,000 from July 1, 2008, until 2010).
  • Louisiana has a 50% tax credit up to $12,500 for the installation of a wind or solar system.
  • New Jersey law provides new solar power installations with exemptions from the 7% state sales tax and from any increase in property assessment (local property tax increases), subject to certain registration requirements.

Feed-in Tariff

According to experience, a feed-in tariff is both the least expensive and the most effective means of developing solar power. This is because investors need certainty, and a feed-in tariff definitely gives them that.

California enacted a feed-in tariff that began on February 14, 2008, while Washington has a feed-in tariff of 15¢/kWh which increases to 54¢/kWh if components are manufactured in the state. Hawaii, Michigan, and Vermont also have feed-in tariffs.

In 2010, the Federal Energy Regulatory (FERC) ruled that states were able to implement above-market feed-in tariffs for specific technologies.

Solar Renewable Energy Certificates

In recent years, states that have passed the Renewable Portfolio Standard (RPS) or the Renewable Electricity Standard (RES) laws have relied on the use of solar renewable energy certificates (SRECs) to meet state requirements. They have achieved this by adding a specific solar carve-out to the state RPS. The first SREC program was implemented in 2005 by New Jersey. Soon enough, this program has expanded to several other states, including Maryland, Delaware, Ohio, Massachusetts, North Carolina, and Pennsylvania.

SREC offers many advantages, but one of its major problems is the lack of certainty for investors. A feed-in tariff provides a known return on investment, but an SREC program provides only a possible return of investment.

Power Purchase Agreement

In 2006, investors started offering free solar panel installation in return for a 25-year contract. They also began offering a Power Purchase Agreement (PPA), which is a contract between two parties — one which generates electricity (the seller) and one which is looking to purchase electricity (the buyer).

By 2009, over 90% of commercial PV installed in the United States were installed using a PPA. About 90% of the PV installed in the United States is in states that specifically address PPAs.

New Construction Mandates

In March 2013, Lancaster California became the first U.S. city to mandate the inclusion of solar panels on new homes, requiring that every new housing development must average 1 kW per house.

PACE Financing

The Property Assessed Clean Energy (PACE) Financing is a means of financing energy efficiency upgrades, disaster resiliency improvements, water conservation measures, or renewable energy installations of residential, commercial, and industrial property owners. This innovative financing arrangement lends money to a homeowner for a solar system, to be repaid via an additional tax assessment on the property for 20 years. This kind of financing arrangement allows the installation of the solar system at “relatively little up-front cost to the property owner.”

The principal feature of this program is that the balance of the loan is transferred to the new owners in the event the property is sold, and the loan is paid for entirely through electric bill savings. Unlike a mortgage loan, no funds are transferred when the property is sold — only the repayment obligation is transferred.

PACE programs are currently operating in eight states, California, Colorado, Florida, Maine, Michigan, Missouri, New York, and Wisconsin. Additionally, they are on hold in many other states.

Current Status of Solar Power in the United States

Published on June 2019, the report from the Solar Energy Industries Association and Wood Mackenzie Power and Renewables, a market research group, have discovered that the first quarter of 2019 was the strongest in the U.S. solar industry’s history. A total of 2.7 GW of solar capacity was added to the grid at this time.

Aside from that, new solar installations should grow 25% from 2018, thus amounting to 13.3 GW. This bounceback — after solar installations dipped 2% last year — was driven by larger-scale utility solar projects, which account for 61% of the first quarter’s growth.

This development is a remarkable change from what was expected last year when President Trump announced that he was putting tariffs on imported solar cells and modules. During this time, the industry was worried that the tariffs would hinder solar. However, solar installations shot past the 2-million mark this year instead.

Moreover, the industry expects this growth to continue well past 2019. A number of U.S. utilities have solar projects in the works, and they should be a reality by 2024. And both residential and non-residential solar markets have grown tremendously over the years. Overall, solar power in the United States is currently on an uphill climb.

Solar Flood Light used for below projects in United States

No Projects Found

Solar Flood Light

Do you plan to work on an outdoor lighting project, or are you a new entrant in the outdoor lighting business? Solar flood lights are, without a doubt, your best bet. So, let us look at a few things you need to know before spending your money on them.

Why solar floodlights for your outdoor lighting needs?

Solar flood lights are cutting-edge outdoor lighting systems powered by renewable solar energy. These incredible innovations are currently gaining popularity in the outdoor lighting market for all the right reasons. What are some of the reasons behind the rising solar floodlights’ popularity?

 First, a considerable proportion of people have become environmentally conscious. This group of individuals is moving away from traditional fossil fuels to renewable energy such as solar power. Stocking up on solar floodlights is a shrewd business decision because it lets you tap into this growing market.

Solar floodlights are also more durable than conventional grid-powered floodlights. The only component of the solar option that requires regular maintenance is the battery. Generally speaking, batteries are susceptible to various environmental hazards, including temperature and moisture. You can rest assured of the maximum longevity of your solar flood lights once you shield the battery against such risks. 

 Also, there are many options for you or your customers to choose from when it comes to solar floodlights. The solar lighting merchandise range has expanded speedily over the last ten years. Whether you plan to stock your business or have a large outdoor lighting project, several options are available to choose from. 

What choices do you have when dealing with solar floodlights? 

Individual needs tend to vary when it comes to outdoor lighting. For instance, one individual may require security lights for a small area, and another may need intense lighting solutions for a stadium. Well, you don’t have to panic because there is something for everyone. 

There are several applications of solar floodlights. Alleyway lighting, lighting fence lines, and security lights are some of the most common reasons people buy solar floodlights. Subject to your requirements, you can opt for one of the following options;

  • Small solar accent lights
  • Motion-activated security lights
  • Landscaping solar floodlights
  • Powerful solar flood lights for large arenas

How do solar flood lights generate light from solar energy?

Solar flood lights harness the sun’s power and transform it into electricity that powers an array of LED bulbs. To do this, they utilize several electrical components. The key constituents that you need to take note of include;

  • A solar panel
  • A battery
  • A photo light sensor
  • LED spotlights

The solar panel captures the sun’s solar energy during the day and generates electric energy. The electricity created is then put in storage in the battery and discharged at night to power the LED lights. The lighting process is pretty straightforward, right?

Now that we have covered vital things you need to know about solar floodlights, you must be wondering where to buy them. Well, consider yourself lucky because you are in the right place. Solarfeeds e-commerce marketplace is home to countless leading solar lighting brands.

 I guarantee that you will find what you need at affordable prices and at the best quality imaginable. Moreover, it is pretty easy to navigate the website and find whatever you need. Nonetheless, our support staff is always available to guide and assist you if necessary. Feel free to message us.

 

OEM

Custom Made Solar Products OEM

OEM stands for Original Equipment Manufacturer which is commonly referred to as a company that manufactures and offers parts and accessories of items that are used as components of a product from another company. To sum it up, OEM commonly manufactures specific items on behalf of brands. Though OEM typically operates in the computer and technology industries, it also works in the solar industry.

Factories for White Label Solar Products

In the case of the solar industry, most solar companies work with solar OEMs to build and design their own solar products such as solar panels, cells, modules, etc. OEM becomes their outsourcing partner that helps them in assembling and reproducing their solar products.

Nowadays, a huge number of solar companies, particularly those large solar manufacturing companies, are partnering with outstanding solar OEMs to deliver the best quality solar products to their solar customers. Mainly, the reason is, these solar OEMs help solar manufacturers cut down their production costs since they no longer have to operate their own factories, purchase needed materials and hire labour to produce their solar products.

As a solar manufacturing company, the first thing you need to consider is to find the most reliable solar OEM in the market. One of the biggest perks of the internet these days is you can now easily find these OEMs even in the comfort of your home. With the help of a solar outsourcing marketplace such as SolarFeeds.com, you can easily find the most reliable and right OEM partner for your solar company. Solar outsourcing marketplace helps solar industry professionals gather accurate and timely information about solar including the list of most trusted Solar Original Equipment Manufacturers.

United States

The Solar Potential of USA

According to a 1998 report by the United States Department of Energy, it has been discovered that available domestic solar energy, including biomass, was technically accessible regardless of cost amounted to 586,687 Quadrillion BTUs (Quads). Of that number, 95% was biomass. Coal represented the second largest resource, with 38,147 Quads. Predictions of how much solar power was economically possible to collect added up to 352 quads, compared with 5,266 quads from coal.

All the estimations that were used in the report were based on a prediction that the price of a barrel oil would become $38 in 2010. Additionally, they were also based on multiplied annual renewable resources by 30 for comparison with non-renewable resources. In 2007, the total annual energy consumption of the United States was about 100 Quads, which was less than 0.5% of what is theoretically available from sunlight.

Moreover, in 2012, a report from the National Renewable Energy Laboratory (NREL) described the technically available renewable energy resources for each state. In addition to that, the report estimated that urban utility-scale photovoltaics could supply 2,232 TWh per year, rural utility-scale PV 280,613 TWh per year, rooftop PV 818 TWh per year, and CSP 116,146 TWh per year. All these amounted for a total of almost 400,000 TWh per year, which was 100 times the current consumption of 3,856 TWh in 2011. For comparison, at the time, onshore wind potential was estimated at 32,784 TWh per year, offshore wind at 16,976 TWh per year, and the total available from all renewable resources was estimated at 481,963 TWh per year.

 

United States Government Support

A complete list of incentives can be found at the Database of State Incentives for Renewable Energy (DSIRE). A lot of solar power systems are grid-connected and use net metering laws to allow the use of electricity in the evening that was generated during the daytime. New Jersey is the state with the least restrictive net metering law while California is the one that has the most number of homes that have solar panels installed.

Many were installed because of the million solar roofs initiative, which entails a vision introduced back in 2007 where solar PV panels are to be installed on an additional million rooftops of home or businesses in the state of California by 2018.

In some states, like Florida, solar power is subject to legal restrictions that discourage its use.

Federal Tax Credit

The federal tax credit for solar was extended for eight years as part of the financial bailout bill, H.R. 1424, until the end of 2016. It was predicted that this will create about 440,000 jobs and 28 GW of solar power. Additionally, it was also predicted that this will lead to a $300 billion market for solar panels. This prediction did not take into account the removal of the $2,000 cap on residential tax credits at the end of 2008.

Moreover, a 30% tax credit is available for residential and commercial installations. For 2009 through 2011, this was a 30% grant instead of a tax credit, and at the time, it was known as the 1603 grant program.

The federal Residential Energy Efficient Property Credit, an income tax credit on IRS Form 5695, for residential PV and solar thermal was extended in December 2015 to remain at 30% of system cost (parts and installations) for systems that are put into service by the end of 2019, then 26% until the end of 2020, and then 22% until the end of 2021. This applies to a taxpayer’s principal and/or second residences, but this can’t be applied to a property that is rented out. There is no maximum cap on the credit, and the credit can be applied toward the Alternative Minimum Tax. Any excess credit (greater than that year’s tax liability) can be rolled into the following year.

The solar industry and utilities clashed extensively on renewal, but the solar industry won. The renewal is expected to add $38 billion of investment for 20 GW of solar.

Section 1603 Grants

President Barack Obama’s stimulus bill in 2009 created a program known as Section 1603 grants. This program was designed so as to give federal grants to solar companies for 30% of investments into solar energy. Since 2009, the federal government has given solar companies $25 billion in grant money through this program. However, the Section 1603 grant program expired in 2011.

The United States Treasury Department has been investigating solar companies for potential fraud since 2013. The department promised a report by June 2015, but the report had not been released as of 2016.

Solar America Initiative

The United States Department of Energy (DOE) announced on September 29, 2008, that it will invest $17.6 million, subject to annual appropriations, in six company-led, early-stage PV projects under the Solar America Initiative’s “PV Incubator” funding opportunity. The PV Incubator project is designed to fund prototype PV components and systems with the goal of moving them through the commercialization process by 2010. The 2008 award is the second funding opportunity released under the PV Incubator project. With the cost-share from the industry, which is at least 20%, up to $35.4 million would be invested in these projects. These projects would run for 18 months and are subcontracted through DOE’s National Renewable Energy Laboratory.

Most of the projects were to receive up to $3 million in funding, except Solasta and Spire Semiconductor which would receive up to $2.6 million and $2.97 million, respectively. Some of the projects under this initiative include:

  • Massachusetts-based 1366 Technologies developing a new cell architecture for low-cost, multi-crystalline silicon cells, which will enhance cell performance through improved light-trapping texturing and grooves for self-aligned metallization fingers
  • California’s Innovalight using ink-jet printing to transfer their “silicon ink” onto thin-crystalline silicon wafers so as to produce high-efficiency and low-cost solar cells and modules
  • Skyline Solar, also in California, developing an integrated, lightweight, and single-axis tracked system that reflects and concentrates sunlight over 10 times onto silicon cells
  • Solasta, in Massachusetts, working on a novel cell design that increases currents and lowers materials cost
  • Solexel, another California-based company, commercializing a disruptive, 3D high-efficiency monocrystalline silicon cell technology that dramatically reduces manufacturing cost per watt
  • Spire Semiconductor in New Hampshire developing three-junction tandem solar cells that better optimize the optical properties of their device layers. This company is targeting cell efficiencies over 42% using a low-cost manufacturing method.

The PV Incubator project is part of the Solar America Initiative (SAI), which plans to make solar energy cost-competitive with conventional forms of electricity by 2015 (grid parity).

The U.S. Department of Energy Solar Energy Technology Program (SETP) will achieve the goals of the SAI through partnerships and strategic alliances by focusing mainly on four areas. These are:

  • Market Transformation: activities that address marketplace barriers and offer the chance for market expansion
  • Device and Process Proof of Concept: R&D activities addressing novel devices or processes with a potentially significant performance or cost advantages
  • Component Prototype and Pilot-Scale Production: R&D activities emphasizing the development of prototype PV components or systems that are produced at pilot-scale with demonstrated cost, reliability, or performance advantages
  • System Development and Manufacturing: collaborative R&D activities among industry and university partners to develop and improve solar energy technologies

Another thing that is a part of the Solar America Initiative is the Solar America Showcase. For this activity, preference is given to large-scale, highly visible, and highly replicable installations that involve cutting-edge solar technologies or novel applications of solar.

SunShot Initiative

Announced by the Department of Energy in 2011, the SunShot Initiative aims to reduce the cost of solar power by 75% from 2010 to 2020. In great detail, this initiative’s goals are as follows:

  • Residential system prices reduced from $6/W to $1.50/W
  • Commercial system prices reduced from $5/W to $1.25/W
  • Utility-scale system prices reduced from $4/W to $1/W (CSP, CPV, and PV)

Additionally, the Department of Energy announced a $29 million investment in four projects that would help advance affordable and reliable clean energy for American families and businesses. The $29 million would be separated into two investments:

  • $21 million investment over five years to design plug-and-play PV systems that can be purchased, installed, and operational in one day
  • $8 million investment in two projects to help utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S. solar energy plants

Other projects under the SunShot Initiative are the following:

  • Fraunhofer USA’s Center for Sustainable Energy Systems in Cambridge, Massachusetts developing PV technologies that allow homeowners to easily select the right solar system for their house and install, wire and connect to the grid
  • North Carolina State University leading a project to create standard PV components and system designs that can adapt simply to any residential roof and can be installed and connected to the grid quickly and efficiently
  • IBM Thomas J. Watson Research Center in Armonk, New York leading a new project based on the Watson computer system that uses big data processing and self-adjusting algorithms to integrate different prediction models and learning technologies

All these projects are working with the Department of Energy and the National Oceanic and Atmospheric Association to improve the accuracy of solar forecasts and share the results of this work with industry and academia.

State and Local

There have been numerous instances throughout the years that showcase the efforts that state and local government officials have undergone to make solar possible. The following are the most well-known of these instances:

  • Governor Jerry Brown has signed legislation requiring California’s utilities to get 50% of their electricity from renewable energy sources by the end of 2030.
  • The San Francisco Board of Supervisors passed solar incentives of up to $6,000 for homeowners and up to $10,000 for businesses. Applications for the program started on July 1, 2008. In April 2016, they passed a law that requires all new buildings below 10 stories to have rooftop solar panels. This made San Francisco the first major U.S. city to do so.
  • In 2008, Berkeley initiated a revolutionary pilot program where homeowners are able to add the cost of solar panels to their property tax assessment and pay for them out of their electricity cost savings. In 2009, over a dozen states passed legislation allowing property tax financing. All in all, 27 states offer loans for solar projects.
  • The California Solar Initiative has set a goal to create 3,000 MW of new, solar-produced electricity by 2016.
  • New Hampshire has a $3,750 residential rebate program for up to 50% of system cost for systems less than 5 kWp ($6,000 from July 1, 2008, until 2010).
  • Louisiana has a 50% tax credit up to $12,500 for the installation of a wind or solar system.
  • New Jersey law provides new solar power installations with exemptions from the 7% state sales tax and from any increase in property assessment (local property tax increases), subject to certain registration requirements.

Feed-in Tariff

According to experience, a feed-in tariff is both the least expensive and the most effective means of developing solar power. This is because investors need certainty, and a feed-in tariff definitely gives them that.

California enacted a feed-in tariff that began on February 14, 2008, while Washington has a feed-in tariff of 15¢/kWh which increases to 54¢/kWh if components are manufactured in the state. Hawaii, Michigan, and Vermont also have feed-in tariffs.

In 2010, the Federal Energy Regulatory (FERC) ruled that states were able to implement above-market feed-in tariffs for specific technologies.

Solar Renewable Energy Certificates

In recent years, states that have passed the Renewable Portfolio Standard (RPS) or the Renewable Electricity Standard (RES) laws have relied on the use of solar renewable energy certificates (SRECs) to meet state requirements. They have achieved this by adding a specific solar carve-out to the state RPS. The first SREC program was implemented in 2005 by New Jersey. Soon enough, this program has expanded to several other states, including Maryland, Delaware, Ohio, Massachusetts, North Carolina, and Pennsylvania.

SREC offers many advantages, but one of its major problems is the lack of certainty for investors. A feed-in tariff provides a known return on investment, but an SREC program provides only a possible return of investment.

Power Purchase Agreement

In 2006, investors started offering free solar panel installation in return for a 25-year contract. They also began offering a Power Purchase Agreement (PPA), which is a contract between two parties — one which generates electricity (the seller) and one which is looking to purchase electricity (the buyer).

By 2009, over 90% of commercial PV installed in the United States were installed using a PPA. About 90% of the PV installed in the United States is in states that specifically address PPAs.

New Construction Mandates

In March 2013, Lancaster California became the first U.S. city to mandate the inclusion of solar panels on new homes, requiring that every new housing development must average 1 kW per house.

PACE Financing

The Property Assessed Clean Energy (PACE) Financing is a means of financing energy efficiency upgrades, disaster resiliency improvements, water conservation measures, or renewable energy installations of residential, commercial, and industrial property owners. This innovative financing arrangement lends money to a homeowner for a solar system, to be repaid via an additional tax assessment on the property for 20 years. This kind of financing arrangement allows the installation of the solar system at “relatively little up-front cost to the property owner.”

The principal feature of this program is that the balance of the loan is transferred to the new owners in the event the property is sold, and the loan is paid for entirely through electric bill savings. Unlike a mortgage loan, no funds are transferred when the property is sold — only the repayment obligation is transferred.

PACE programs are currently operating in eight states, California, Colorado, Florida, Maine, Michigan, Missouri, New York, and Wisconsin. Additionally, they are on hold in many other states.

Current Status of Solar Power in the United States

Published on June 2019, the report from the Solar Energy Industries Association and Wood Mackenzie Power and Renewables, a market research group, have discovered that the first quarter of 2019 was the strongest in the U.S. solar industry’s history. A total of 2.7 GW of solar capacity was added to the grid at this time.

Aside from that, new solar installations should grow 25% from 2018, thus amounting to 13.3 GW. This bounceback — after solar installations dipped 2% last year — was driven by larger-scale utility solar projects, which account for 61% of the first quarter’s growth.

This development is a remarkable change from what was expected last year when President Trump announced that he was putting tariffs on imported solar cells and modules. During this time, the industry was worried that the tariffs would hinder solar. However, solar installations shot past the 2-million mark this year instead.

Moreover, the industry expects this growth to continue well past 2019. A number of U.S. utilities have solar projects in the works, and they should be a reality by 2024. And both residential and non-residential solar markets have grown tremendously over the years. Overall, solar power in the United States is currently on an uphill climb.

Seeking Solar Materials
Suppliers?

Don’t run around requesting for quotes.
Let quotes come to you!