• Categories
  • 2761
    542
    461
    407
    393
    162
    139
    79
    42
    38
    7
    7
    4
    4
    0
    542
    4
    42
    407
    139
    7
    7
    461
    4
    79
    393
    2761
    0
    162
    38

Selling to

  • 7
  • 0
  • 0
  • 7
  • 6
  • 74
  • 20
  • 2
  • 5
  • 5
  • 9
  • 5
  • 10
  • 0
  • 1
  • 1
  • 27
  • 7
  • 1
  • 6
  • 74
  • 0
  • 5
  • 2363
  • 6
  • 7
  • 5
  • 5
  • 8
  • 10
  • 6
  • 3
  • 7
  • 1
  • 3
  • 0
  • 8
  • 56
  • 0
  • 2
  • 218
  • 1
  • 21
  • 0
  • 0
  • 0
  • 0
  • 27
  • 7
  • 808
  • 16
  • 2
  • 0
  • 3
  • 2
  • 101
  • 0
  • 87
  • 3
  • 1
  • 6
  • 0
  • 1
  • 2
  • 2
  • 7
  • 4
  • 1
  • 1
  • 16
  • 0
  • 0
  • 12
  • 0
  • 1
  • 1
  • 4
  • 2
  • 1
  • 38
  • 6
  • 0
  • 12
  • 34
  • 4
  • 22
  • 1
  • 1
  • 0
  • 7
  • 21
  • 13
  • 1
  • 0
  • 3
  • 9
  • 1
  • 5
  • 1
  • 4
  • 1
  • 13
  • 0
  • 2
  • 5
  • 29
  • 12
  • 70
  • 4
  • 9
  • 32
  • 60
  • 1
  • 11
  • 2
  • 57
  • 6
  • 25
  • 70
  • 461
  • 0
  • 1
  • 18
  • 0
  • 2
  • 7
  • 0
  • 0
  • 7
  • 6
  • 74
  • 20
  • 2
  • 5
  • 5
  • 9
  • 5
  • 10
  • 0
  • 1
  • 1
  • 27
  • 7
  • 1
  • 6
  • 74
  • 0
  • 5
  • 2363
  • 6
  • 7
  • 5
  • 5
  • 8
  • 10
  • 6
  • 3
  • 7
  • 1
  • 3
  • 0
  • 8
  • 56
  • 0
  • 2
  • 218
  • 1
  • 21
  • 0
  • 0
  • 0
  • 0
  • 27
  • 7
  • 808
  • 16
  • 2
  • 0
  • 3
  • 2
  • 101
  • 0
  • 87
  • 3
  • 1
  • 6
  • 0
  • 1
  • 2
  • 2
  • 7
  • 4
  • 1
  • 1
  • 16
  • 0
  • 0
  • 12
  • 0
  • 1
  • 1
  • 4
  • 2
  • 1
  • 38
  • 6
  • 0
  • 12
  • 34
  • 4
  • 22
  • 1
  • 1
  • 0
  • 7
  • 21
  • 13
  • 1
  • 0
  • 3
  • 9
  • 1
  • 5
  • 1
  • 4
  • 1
  • 13
  • 0
  • 2
  • 5
  • 29
  • 12
  • 70
  • 4
  • 9
  • 32
  • 60
  • 1
  • 11
  • 2
  • 57
  • 6
  • 25
  • 70
  • 461
  • 0
  • 1
  • 18
  • 0
  • 2
  • Capacity
  • 2318
  • 2285
  • 2231
  • 2293
  • 2318
  • 2285
  • 2231
  • 2293
    Solar

Top Shunt Regulators Manufacturers Suppliers in United States

0 Suppliers
Didn't find a preferred supplier

Increasing evidence of climate change is forcing businesses to play an active role in reducing sustainability burdens and preserving resources for future generations. We believe that we are actively contributing to environmental awareness and provide our customers the benefits of green energy. Innovative technology in the field of solar energy brings on the market advanced, technically improved products. They are characterized by higher energy [...]

  • Shunt Regulators
  • United States
  • United States

Next Energy Alliance’s primary mission and purpose are to network and link arms with those who have a passion for the solar industry. Connecting sales organizations and solar installers nationwide. Providing an organization full of like-minded individuals from small to large businesses. Our goal is to bring a code of ethics to the industry and operate with integrity and transparency. The Alliance members will be competitive by coming together [...]

  • Shunt Regulators
  • United States
  • United States

Hightec Solar Inc. is a solar panel manufacturer based in Michigan City, Indiana. They strive to provide their customers with the highest quality panels in the marketplace, and are proud to be one of only two manufacturers nationwide to use the cutting-edge technology that they do! Hightec Solar produces 12 volt panels and residential 24 volt panels at their 50,000 square foot facility. All Hightec Solar panels are proudly designed and [...]

  • Shunt Regulators
  • United States
  • United States

Last Updated Jul 4, 2022

Shunt Regulators used for below projects in United States

No Projects Found

Shunt Regulators

Wholesale Shunt Regulator for PV Systems

Essentially, a shunt regulator — also known as a shunt voltage regulator (aka. charge controller)— is a form of regulator where the regulating element shunts the current to ground. By maintaining a constant voltage across its terminals, it takes up the surplus current to maintain the voltage across the load.

In terms of the basic operation of a shunt regulator, the load is operated with a resistor in series with the voltage source and the shunt regulator in parallel with the load. In order to keep the voltage across the load constant, a level of current must be drawn through the series resistor to maintain the required voltage across the load. The load will take some, and the remaining current is drawn by the shunt voltage regulator.

The circuit is designed so that at maximum load current, the shunt regulator draws virtually no current, and at minimum load current, the shunt voltage regulator passes the full current. As a result, it can be seen that shunt regulators are inefficient because the maximum current is drawn from the source regardless of the load current, i.e. when there is no load current.

Because of the purpose of the shunt regulator, this device has been considered as an essential element within the linear power supply technology.

Zener Diode Shunt Charge Controller

One of the most common and simple forms of shunt regulator is the simple Zener diode regulator circuit.

Its mechanism is very straightforward. Once over its small minimum current, the Zener diode maintains an almost constant voltage across its terminals. The series resistor drops the voltage from the source to the Zener diode and loads. As the Zener diode maintains its voltage, any variations in load current do not affect the voltage across the Zener diode. It takes up the current variations required to ensure the correct drop across the series resistor. In this way, it shunts sufficient current to maintain the voltage across its terminals and hence the load.

In the shunt voltage regulator circuit, the Zener diode must be capable of dissipating the power from the maximum amount of current it can handle. This is most likely to be a little more than the maximum current supplied to the load as the Zener diode will need to pass all the current when the load current is zero. Therefore, the total maximum current that will be passed by the diode is the load current plus an allowance for current to maintain the reference voltage when the load is taking its maximum current.

It should also be noted that for the shunt regulator circuit, the series resistance is comprised of the series resistor value, plus any source resistance. In most cases, the value of the series resistor will dominate and the source resistance can be ignored — but this may not always be true.

Why Buy Wholesale Shunt Regulators for PV Systems from Us?

Our website lists all sorts of shunt regulators for PV systems from established and well-respected manufacturers and brands all over the world. As a result, you can expect that the shunt regulators that we offer are of the best variety. They are characterized by numerous remarkable features, such as higher efficiency, sturdy construction, and a longer lifespan. Therefore, all the shunt regulators that we offer will undoubtedly have the ability to fulfill all your solar power needs.

If you want to buy shunt regulators for PV systems at low wholesale prices, then go through our website to explore products with profitable deals. You can also choose to send in your query at [email protected]

Manufacturers

In the simplest terms, manufacturing is the process of producing actual goods or items/products through the use of raw materials, human labour, use of machinery, tools and other processes such as chemical formulation. This process usually starts with product designing and raw material selection, turning them into an actual product output. 

Solar Products Manufacturers and Factories

In terms of solar, manufacturing encompasses the fabrication or production of materials across the solar market chain. The most common product being manufactured by solar companies are the solar photovoltaic (PV) panels, which are made with several subcomponents such as solar wafers, cells, glass, back sheets, and frames. Before a solar panel comes into life, it will undergo a lot of processes, from designing, modelling, choosing what raw materials to use and then assembling them all to make the final product.

More Than Just Solar Panels

Aside from the solar panels, solar companies have many other manufactured products that are required to make solar energy systems work smoothly, like solar inverters, batteries, combiner boxes, and racking and tracking structures.

Having a solar manufacturing sector makes a big difference in supplying affordable solar energy in different areas. Aside from maintaining the rising domestic and global demand for cleaner and renewable energy, they also help the economy grow, particularly the solar industry. If you are in search of a reliable solar manufacturing company, checking out our solar outsourcing company, SolarFeeds, would help you get easy access to reliable information, news, data and a list of solar manufacturers that can help you with solar products.

United States

The Solar Potential of USA

According to a 1998 report by the United States Department of Energy, it has been discovered that available domestic solar energy, including biomass, was technically accessible regardless of cost amounted to 586,687 Quadrillion BTUs (Quads). Of that number, 95% was biomass. Coal represented the second largest resource, with 38,147 Quads. Predictions of how much solar power was economically possible to collect added up to 352 quads, compared with 5,266 quads from coal.

All the estimations that were used in the report were based on a prediction that the price of a barrel oil would become $38 in 2010. Additionally, they were also based on multiplied annual renewable resources by 30 for comparison with non-renewable resources. In 2007, the total annual energy consumption of the United States was about 100 Quads, which was less than 0.5% of what is theoretically available from sunlight.

Moreover, in 2012, a report from the National Renewable Energy Laboratory (NREL) described the technically available renewable energy resources for each state. In addition to that, the report estimated that urban utility-scale photovoltaics could supply 2,232 TWh per year, rural utility-scale PV 280,613 TWh per year, rooftop PV 818 TWh per year, and CSP 116,146 TWh per year. All these amounted for a total of almost 400,000 TWh per year, which was 100 times the current consumption of 3,856 TWh in 2011. For comparison, at the time, onshore wind potential was estimated at 32,784 TWh per year, offshore wind at 16,976 TWh per year, and the total available from all renewable resources was estimated at 481,963 TWh per year.

 

United States Government Support

A complete list of incentives can be found at the Database of State Incentives for Renewable Energy (DSIRE). A lot of solar power systems are grid-connected and use net metering laws to allow the use of electricity in the evening that was generated during the daytime. New Jersey is the state with the least restrictive net metering law while California is the one that has the most number of homes that have solar panels installed.

Many were installed because of the million solar roofs initiative, which entails a vision introduced back in 2007 where solar PV panels are to be installed on an additional million rooftops of home or businesses in the state of California by 2018.

In some states, like Florida, solar power is subject to legal restrictions that discourage its use.

Federal Tax Credit

The federal tax credit for solar was extended for eight years as part of the financial bailout bill, H.R. 1424, until the end of 2016. It was predicted that this will create about 440,000 jobs and 28 GW of solar power. Additionally, it was also predicted that this will lead to a $300 billion market for solar panels. This prediction did not take into account the removal of the $2,000 cap on residential tax credits at the end of 2008.

Moreover, a 30% tax credit is available for residential and commercial installations. For 2009 through 2011, this was a 30% grant instead of a tax credit, and at the time, it was known as the 1603 grant program.

The federal Residential Energy Efficient Property Credit, an income tax credit on IRS Form 5695, for residential PV and solar thermal was extended in December 2015 to remain at 30% of system cost (parts and installations) for systems that are put into service by the end of 2019, then 26% until the end of 2020, and then 22% until the end of 2021. This applies to a taxpayer’s principal and/or second residences, but this can’t be applied to a property that is rented out. There is no maximum cap on the credit, and the credit can be applied toward the Alternative Minimum Tax. Any excess credit (greater than that year’s tax liability) can be rolled into the following year.

The solar industry and utilities clashed extensively on renewal, but the solar industry won. The renewal is expected to add $38 billion of investment for 20 GW of solar.

Section 1603 Grants

President Barack Obama’s stimulus bill in 2009 created a program known as Section 1603 grants. This program was designed so as to give federal grants to solar companies for 30% of investments into solar energy. Since 2009, the federal government has given solar companies $25 billion in grant money through this program. However, the Section 1603 grant program expired in 2011.

The United States Treasury Department has been investigating solar companies for potential fraud since 2013. The department promised a report by June 2015, but the report had not been released as of 2016.

Solar America Initiative

The United States Department of Energy (DOE) announced on September 29, 2008, that it will invest $17.6 million, subject to annual appropriations, in six company-led, early-stage PV projects under the Solar America Initiative’s “PV Incubator” funding opportunity. The PV Incubator project is designed to fund prototype PV components and systems with the goal of moving them through the commercialization process by 2010. The 2008 award is the second funding opportunity released under the PV Incubator project. With the cost-share from the industry, which is at least 20%, up to $35.4 million would be invested in these projects. These projects would run for 18 months and are subcontracted through DOE’s National Renewable Energy Laboratory.

Most of the projects were to receive up to $3 million in funding, except Solasta and Spire Semiconductor which would receive up to $2.6 million and $2.97 million, respectively. Some of the projects under this initiative include:

  • Massachusetts-based 1366 Technologies developing a new cell architecture for low-cost, multi-crystalline silicon cells, which will enhance cell performance through improved light-trapping texturing and grooves for self-aligned metallization fingers
  • California’s Innovalight using ink-jet printing to transfer their “silicon ink” onto thin-crystalline silicon wafers so as to produce high-efficiency and low-cost solar cells and modules
  • Skyline Solar, also in California, developing an integrated, lightweight, and single-axis tracked system that reflects and concentrates sunlight over 10 times onto silicon cells
  • Solasta, in Massachusetts, working on a novel cell design that increases currents and lowers materials cost
  • Solexel, another California-based company, commercializing a disruptive, 3D high-efficiency monocrystalline silicon cell technology that dramatically reduces manufacturing cost per watt
  • Spire Semiconductor in New Hampshire developing three-junction tandem solar cells that better optimize the optical properties of their device layers. This company is targeting cell efficiencies over 42% using a low-cost manufacturing method.

The PV Incubator project is part of the Solar America Initiative (SAI), which plans to make solar energy cost-competitive with conventional forms of electricity by 2015 (grid parity).

The U.S. Department of Energy Solar Energy Technology Program (SETP) will achieve the goals of the SAI through partnerships and strategic alliances by focusing mainly on four areas. These are:

  • Market Transformation: activities that address marketplace barriers and offer the chance for market expansion
  • Device and Process Proof of Concept: R&D activities addressing novel devices or processes with a potentially significant performance or cost advantages
  • Component Prototype and Pilot-Scale Production: R&D activities emphasizing the development of prototype PV components or systems that are produced at pilot-scale with demonstrated cost, reliability, or performance advantages
  • System Development and Manufacturing: collaborative R&D activities among industry and university partners to develop and improve solar energy technologies

Another thing that is a part of the Solar America Initiative is the Solar America Showcase. For this activity, preference is given to large-scale, highly visible, and highly replicable installations that involve cutting-edge solar technologies or novel applications of solar.

SunShot Initiative

Announced by the Department of Energy in 2011, the SunShot Initiative aims to reduce the cost of solar power by 75% from 2010 to 2020. In great detail, this initiative’s goals are as follows:

  • Residential system prices reduced from $6/W to $1.50/W
  • Commercial system prices reduced from $5/W to $1.25/W
  • Utility-scale system prices reduced from $4/W to $1/W (CSP, CPV, and PV)

Additionally, the Department of Energy announced a $29 million investment in four projects that would help advance affordable and reliable clean energy for American families and businesses. The $29 million would be separated into two investments:

  • $21 million investment over five years to design plug-and-play PV systems that can be purchased, installed, and operational in one day
  • $8 million investment in two projects to help utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S. solar energy plants

Other projects under the SunShot Initiative are the following:

  • Fraunhofer USA’s Center for Sustainable Energy Systems in Cambridge, Massachusetts developing PV technologies that allow homeowners to easily select the right solar system for their house and install, wire and connect to the grid
  • North Carolina State University leading a project to create standard PV components and system designs that can adapt simply to any residential roof and can be installed and connected to the grid quickly and efficiently
  • IBM Thomas J. Watson Research Center in Armonk, New York leading a new project based on the Watson computer system that uses big data processing and self-adjusting algorithms to integrate different prediction models and learning technologies

All these projects are working with the Department of Energy and the National Oceanic and Atmospheric Association to improve the accuracy of solar forecasts and share the results of this work with industry and academia.

State and Local

There have been numerous instances throughout the years that showcase the efforts that state and local government officials have undergone to make solar possible. The following are the most well-known of these instances:

  • Governor Jerry Brown has signed legislation requiring California’s utilities to get 50% of their electricity from renewable energy sources by the end of 2030.
  • The San Francisco Board of Supervisors passed solar incentives of up to $6,000 for homeowners and up to $10,000 for businesses. Applications for the program started on July 1, 2008. In April 2016, they passed a law that requires all new buildings below 10 stories to have rooftop solar panels. This made San Francisco the first major U.S. city to do so.
  • In 2008, Berkeley initiated a revolutionary pilot program where homeowners are able to add the cost of solar panels to their property tax assessment and pay for them out of their electricity cost savings. In 2009, over a dozen states passed legislation allowing property tax financing. All in all, 27 states offer loans for solar projects.
  • The California Solar Initiative has set a goal to create 3,000 MW of new, solar-produced electricity by 2016.
  • New Hampshire has a $3,750 residential rebate program for up to 50% of system cost for systems less than 5 kWp ($6,000 from July 1, 2008, until 2010).
  • Louisiana has a 50% tax credit up to $12,500 for the installation of a wind or solar system.
  • New Jersey law provides new solar power installations with exemptions from the 7% state sales tax and from any increase in property assessment (local property tax increases), subject to certain registration requirements.

Feed-in Tariff

According to experience, a feed-in tariff is both the least expensive and the most effective means of developing solar power. This is because investors need certainty, and a feed-in tariff definitely gives them that.

California enacted a feed-in tariff that began on February 14, 2008, while Washington has a feed-in tariff of 15¢/kWh which increases to 54¢/kWh if components are manufactured in the state. Hawaii, Michigan, and Vermont also have feed-in tariffs.

In 2010, the Federal Energy Regulatory (FERC) ruled that states were able to implement above-market feed-in tariffs for specific technologies.

Solar Renewable Energy Certificates

In recent years, states that have passed the Renewable Portfolio Standard (RPS) or the Renewable Electricity Standard (RES) laws have relied on the use of solar renewable energy certificates (SRECs) to meet state requirements. They have achieved this by adding a specific solar carve-out to the state RPS. The first SREC program was implemented in 2005 by New Jersey. Soon enough, this program has expanded to several other states, including Maryland, Delaware, Ohio, Massachusetts, North Carolina, and Pennsylvania.

SREC offers many advantages, but one of its major problems is the lack of certainty for investors. A feed-in tariff provides a known return on investment, but an SREC program provides only a possible return of investment.

Power Purchase Agreement

In 2006, investors started offering free solar panel installation in return for a 25-year contract. They also began offering a Power Purchase Agreement (PPA), which is a contract between two parties — one which generates electricity (the seller) and one which is looking to purchase electricity (the buyer).

By 2009, over 90% of commercial PV installed in the United States were installed using a PPA. About 90% of the PV installed in the United States is in states that specifically address PPAs.

New Construction Mandates

In March 2013, Lancaster California became the first U.S. city to mandate the inclusion of solar panels on new homes, requiring that every new housing development must average 1 kW per house.

PACE Financing

The Property Assessed Clean Energy (PACE) Financing is a means of financing energy efficiency upgrades, disaster resiliency improvements, water conservation measures, or renewable energy installations of residential, commercial, and industrial property owners. This innovative financing arrangement lends money to a homeowner for a solar system, to be repaid via an additional tax assessment on the property for 20 years. This kind of financing arrangement allows the installation of the solar system at “relatively little up-front cost to the property owner.”

The principal feature of this program is that the balance of the loan is transferred to the new owners in the event the property is sold, and the loan is paid for entirely through electric bill savings. Unlike a mortgage loan, no funds are transferred when the property is sold — only the repayment obligation is transferred.

PACE programs are currently operating in eight states, California, Colorado, Florida, Maine, Michigan, Missouri, New York, and Wisconsin. Additionally, they are on hold in many other states.

Current Status of Solar Power in the United States

Published on June 2019, the report from the Solar Energy Industries Association and Wood Mackenzie Power and Renewables, a market research group, have discovered that the first quarter of 2019 was the strongest in the U.S. solar industry’s history. A total of 2.7 GW of solar capacity was added to the grid at this time.

Aside from that, new solar installations should grow 25% from 2018, thus amounting to 13.3 GW. This bounceback — after solar installations dipped 2% last year — was driven by larger-scale utility solar projects, which account for 61% of the first quarter’s growth.

This development is a remarkable change from what was expected last year when President Trump announced that he was putting tariffs on imported solar cells and modules. During this time, the industry was worried that the tariffs would hinder solar. However, solar installations shot past the 2-million mark this year instead.

Moreover, the industry expects this growth to continue well past 2019. A number of U.S. utilities have solar projects in the works, and they should be a reality by 2024. And both residential and non-residential solar markets have grown tremendously over the years. Overall, solar power in the United States is currently on an uphill climb.