• Categories
  • 2503
    646
    476
    400
    386
    156
    117
    85
    42
    37
    15
    10
    9
    8
    3
    476
    10
    42
    386
    117
    8
    15
    646
    9
    85
    400
    2503
    3
    156
    37

Selling to

  • 0
  • 0
  • 7
  • 0
  • 0
  • 0
  • 0
  • 8
  • 6
  • 84
  • 21
  • 2
  • 5
  • 7
  • 10
  • 5
  • 0
  • 14
  • 0
  • 0
  • 0
  • 0
  • 1
  • 1
  • 0
  • 28
  • 0
  • 7
  • 1
  • 0
  • 0
  • 6
  • 0
  • 77
  • 0
  • 0
  • 0
  • 6
  • 2598
  • 6
  • 0
  • 0
  • 7
  • 0
  • 5
  • 0
  • 5
  • 9
  • 0
  • 0
  • 10
  • 0
  • 6
  • 3
  • 8
  • 0
  • 2
  • 0
  • 0
  • 3
  • 0
  • 1
  • 0
  • 9
  • 60
  • 0
  • 0
  • 0
  • 2
  • 248
  • 2
  • 22
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 28
  • 8
  • 0
  • 842
  • 17
  • 3
  • 0
  • 3
  • 2
  • 108
  • 0
  • 90
  • 3
  • 1
  • 6
  • 0
  • 0
  • 1
  • 0
  • 0
  • 2
  • 0
  • 0
  • 0
  • 2
  • 7
  • 4
  • 1
  • 1
  • 0
  • 0
  • 18
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 12
  • 0
  • 0
  • 1
  • 1
  • 1
  • 5
  • 0
  • 2
  • 0
  • 0
  • 0
  • 1
  • 38
  • 6
  • 0
  • 14
  • 34
  • 0
  • 5
  • 0
  • 25
  • 0
  • 1
  • 0
  • 1
  • 0
  • 0
  • 0
  • 9
  • 25
  • 15
  • 1
  • 1
  • 4
  • 9
  • 0
  • 0
  • 0
  • 0
  • 0
  • 1
  • 0
  • 6
  • 1
  • 5
  • 1
  • 0
  • 16
  • 0
  • 2
  • 6
  • 0
  • 0
  • 34
  • 14
  • 0
  • 79
  • 4
  • 0
  • 0
  • 10
  • 35
  • 0
  • 67
  • 0
  • 1
  • 12
  • 0
  • 0
  • 0
  • 0
  • 3
  • 67
  • 0
  • 0
  • 0
  • 6
  • 33
  • 74
  • 502
  • 0
  • 0
  • 0
  • 1
  • 19
  • 0
  • 0
  • 0
  • 2
  • 0
  • 0
  • 7
  • 0
  • 0
  • 0
  • 0
  • 8
  • 6
  • 84
  • 21
  • 2
  • 5
  • 7
  • 10
  • 5
  • 0
  • 14
  • 0
  • 0
  • 0
  • 0
  • 1
  • 1
  • 0
  • 28
  • 0
  • 7
  • 1
  • 0
  • 0
  • 6
  • 0
  • 77
  • 0
  • 0
  • 0
  • 6
  • 2598
  • 6
  • 0
  • 0
  • 7
  • 0
  • 5
  • 0
  • 5
  • 9
  • 0
  • 0
  • 10
  • 0
  • 6
  • 3
  • 8
  • 0
  • 2
  • 0
  • 0
  • 3
  • 0
  • 1
  • 0
  • 9
  • 60
  • 0
  • 0
  • 0
  • 2
  • 248
  • 2
  • 22
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 28
  • 8
  • 0
  • 842
  • 17
  • 3
  • 0
  • 3
  • 2
  • 108
  • 0
  • 90
  • 3
  • 1
  • 6
  • 0
  • 0
  • 1
  • 0
  • 0
  • 2
  • 0
  • 0
  • 0
  • 2
  • 7
  • 4
  • 1
  • 1
  • 0
  • 0
  • 18
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 12
  • 0
  • 0
  • 1
  • 1
  • 1
  • 5
  • 0
  • 2
  • 0
  • 0
  • 0
  • 1
  • 38
  • 6
  • 0
  • 14
  • 34
  • 0
  • 5
  • 0
  • 25
  • 0
  • 1
  • 0
  • 1
  • 0
  • 0
  • 0
  • 9
  • 25
  • 15
  • 1
  • 1
  • 4
  • 9
  • 0
  • 0
  • 0
  • 0
  • 0
  • 1
  • 0
  • 6
  • 1
  • 5
  • 1
  • 0
  • 16
  • 0
  • 2
  • 6
  • 0
  • 0
  • 34
  • 14
  • 0
  • 79
  • 4
  • 0
  • 0
  • 10
  • 35
  • 0
  • 67
  • 0
  • 1
  • 12
  • 0
  • 0
  • 0
  • 0
  • 3
  • 67
  • 0
  • 0
  • 0
  • 6
  • 33
  • 74
  • 502
  • 0
  • 0
  • 0
  • 1
  • 19
  • 0
  • 0
  • 0
  • 2
  • Capacity
  • 2414
  • 2675
  • 2321
  • 2366
  • 2414
  • 2675
  • 2321
  • 2366

Certificate

  • Product Certificates
    Solar
0 Suppliers

Australia

Australia’s Solar Energy

The utilization of energy created by the heat and light of the sun and converting it into electricity is commonly known asĀ Solar Power Energy. It was in the 1860’s when solar power technologies was first developed, arising from the distress of industrialist that the current coal, oil and fossil fuels supply would become scarce and limited. Thus, becoming more costly for individual households to afford.

The growing concern has then led to the re-evaluation and re-assessment of the international energy policies and regulations. According to theĀ 2018 World Economy OutlookĀ published by the Organization for Economic Co-operation and Development and the International Energy Agency, the global demand for energy increased by 2.1% in 2017 with a 398 GW of solar PV installed around the world, and, meeting the 2% of global electricity demand.

In which, the rate of installations are influenced by changes, alterations and updates in the policy mechanisms supporting such technology. Nonetheless, this trend is expected to significantly increase in numbers by another 25% by the year 2040.

As one of the fastest developing countries, the land down under has relied greatly on solar power energy as their preferred energy source for decades now. However, it was only then in the year 2015 when the age of solar power technology in Australia underwent a rapid growth. The increasing cost of energy resources like fossil fuels, has led to a significant number of households that are turning into solar energy.

The emergence of government funded incentive programs for the incorporation of domestic and commercial solar power utilization also proliferated. Through the years, solar-powered technology has become Australia’s optimal energy source.

Geographically speaking, the Australian continent is known to have the highest solar radiation per square meter of any continent with an average of 58 million petajoules (PJ) of solar radiation per year, which is approximately 10,000 times larger than the country’s total energy consumption. This has helped increase Australia’s Gross Domestic Product (GDP) to $275 million for every petajoule of energy consumed.

To date, there are 2.15 million or 21% of Australian households are recorded to have Solar Photovoltaic (also known as solar PV) with a combined capacity of over 12.9 gigawatts installed on their rooftops that directly converts sunlight into electricity using a semiconductor cell or solar PV cell. This type of solar power technology is the most common and widely used in households.

Module Testers used for below projects in Australia

No Projects Found

Module Testers

What is a PV Module Tester?

An Array Outdoor Tester measures the output voltage and current of PV arrays to check the power output. Outdoor testers are high-tech calibrated devices that measure even the slightest difference in power output from any of the arrays in a Solar plant.

Outdoor Testers are maintenance and calibration devices that help optimize the output of all the panels in the array lineups. After each measurement, the comparison is done between various arrays. After which, the calibration of panel angles and direction is done. Physical, as well as electrical calibration, is done.

Where is a Solar Module Tester used?

Outdoor Array testers are used in Solar Plants and solar roofs. These devices come in handy after the installation of the solar arrays is done. All the parameters like power, voltage, and current can be measured during the daytime.

Testing is done, and the readings are noted for future references for maintenance. These readings help technicians to give an idea about the performance to set the benchmark.

Advantages of a Solar Panel Tester

  • Uses AA alkaline batteries for power
  • Best for outdoor usage with high power backup
  • Connection with PC with USB
  • The previous tests can be saved as values and graphs

How does a Solar Panel Tester work?

The Array Outdoor Tester is connected to theĀ  Solar arrays like a multimeter. Temperature and power are related and measured. Measurement power ranges from 3.5 W to 500 W.

What are some major brands of Solar Panel Tester?

There are plenty of brands available for usage in the Solar plant. These array testing devices are robust and highly practical to use. TheĀ  screen size is substantial for displaying charts and values of power and temperature.

  • ADCON
  • Ammonit Measurement
  • Aplab
  • Arer Enerji
  • Atonometrics
  • Atumvn
  • Bender
  • Di-Log Solar

Distributors

Solar Products Distributors

Distributors are those companies working as big warehouses that served as the middlemen between the consumer/customer and the manufacturer. Typically, in distribution, a company is handling the sourcing, stocking and logistics but nowadays they are also helping manufacturers in product designing and solving other business conflicts.Ā 

Aside from other industries, distributors also play a vital role in the solar industry. Solar distributors become long-term partners of solar manufacturing companies and even solar contractors. They are not only serving as warehouse facilities but partners that also provide strategic solutions to help solar companies achieve their desired outcomes. Solar distributors assist solar manufacturing companies by storing. handling and shipping their solar products to their buyers. On the other hand, they help solar contractor companies in outsourcing high-quality solar products.Ā 

These solar distributors are the ones who deal with homeowners who want to go solar, businesses that work with the solar industry and solar installers who offer solar system services to both residential and commercial customers. But on top of that, the solar distributor’s main role is to maintain its commitment to outsourcing and handling high-quality products and delivering them to customers at a good value.Ā 

Up to these days, many solar distributors have been operating and helping many solar companies in distributing their products. So, if you are looking for the most trusted and reliable solar distributor, you can easily find one by checking out solar outsourcing companies that provide easy access to reliable information, news, data and a list of solar suppliers and distributors near you.

Australia

Australia’s Solar Energy

The utilization of energy created by the heat and light of the sun and converting it into electricity is commonly known asĀ Solar Power Energy. It was in the 1860’s when solar power technologies was first developed, arising from the distress of industrialist that the current coal, oil and fossil fuels supply would become scarce and limited. Thus, becoming more costly for individual households to afford.

The growing concern has then led to the re-evaluation and re-assessment of the international energy policies and regulations. According to theĀ 2018 World Economy OutlookĀ published by the Organization for Economic Co-operation and Development and the International Energy Agency, the global demand for energy increased by 2.1% in 2017 with a 398 GW of solar PV installed around the world, and, meeting the 2% of global electricity demand.

In which, the rate of installations are influenced by changes, alterations and updates in the policy mechanisms supporting such technology. Nonetheless, this trend is expected to significantly increase in numbers by another 25% by the year 2040.

As one of the fastest developing countries, the land down under has relied greatly on solar power energy as their preferred energy source for decades now. However, it was only then in the year 2015 when the age of solar power technology in Australia underwent a rapid growth. The increasing cost of energy resources like fossil fuels, has led to a significant number of households that are turning into solar energy.

The emergence of government funded incentive programs for the incorporation of domestic and commercial solar power utilization also proliferated. Through the years, solar-powered technology has become Australia’s optimal energy source.

Geographically speaking, the Australian continent is known to have the highest solar radiation per square meter of any continent with an average of 58 million petajoules (PJ) of solar radiation per year, which is approximately 10,000 times larger than the country’s total energy consumption. This has helped increase Australia’s Gross Domestic Product (GDP) to $275 million for every petajoule of energy consumed.

To date, there are 2.15 million or 21% of Australian households are recorded to have Solar Photovoltaic (also known as solar PV) with a combined capacity of over 12.9 gigawatts installed on their rooftops that directly converts sunlight into electricity using a semiconductor cell or solar PV cell. This type of solar power technology is the most common and widely used in households.