• Categories
  • 2503
    646
    476
    400
    386
    156
    117
    85
    42
    37
    15
    10
    9
    8
    3
    476
    10
    42
    386
    117
    8
    15
    646
    9
    85
    400
    2503
    3
    156
    37

Selling to

  • 0
  • 0
  • 7
  • 0
  • 0
  • 0
  • 0
  • 8
  • 6
  • 84
  • 21
  • 2
  • 5
  • 7
  • 10
  • 5
  • 0
  • 14
  • 0
  • 0
  • 0
  • 0
  • 1
  • 1
  • 0
  • 28
  • 0
  • 7
  • 1
  • 0
  • 0
  • 6
  • 0
  • 77
  • 0
  • 0
  • 0
  • 6
  • 2598
  • 6
  • 0
  • 0
  • 7
  • 0
  • 5
  • 0
  • 5
  • 9
  • 0
  • 0
  • 10
  • 0
  • 6
  • 3
  • 8
  • 0
  • 2
  • 0
  • 0
  • 3
  • 0
  • 1
  • 0
  • 9
  • 60
  • 0
  • 0
  • 0
  • 2
  • 248
  • 2
  • 22
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 28
  • 8
  • 0
  • 842
  • 17
  • 3
  • 0
  • 3
  • 2
  • 108
  • 0
  • 90
  • 3
  • 1
  • 6
  • 0
  • 0
  • 1
  • 0
  • 0
  • 2
  • 0
  • 0
  • 0
  • 2
  • 7
  • 4
  • 1
  • 1
  • 0
  • 0
  • 18
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 12
  • 0
  • 0
  • 1
  • 1
  • 1
  • 5
  • 0
  • 2
  • 0
  • 0
  • 0
  • 1
  • 38
  • 6
  • 0
  • 14
  • 34
  • 0
  • 5
  • 0
  • 25
  • 0
  • 1
  • 0
  • 1
  • 0
  • 0
  • 0
  • 9
  • 25
  • 15
  • 1
  • 1
  • 4
  • 9
  • 0
  • 0
  • 0
  • 0
  • 0
  • 1
  • 0
  • 6
  • 1
  • 5
  • 1
  • 0
  • 16
  • 0
  • 2
  • 6
  • 0
  • 0
  • 34
  • 14
  • 0
  • 79
  • 4
  • 0
  • 0
  • 10
  • 35
  • 0
  • 67
  • 0
  • 1
  • 12
  • 0
  • 0
  • 0
  • 0
  • 3
  • 67
  • 0
  • 0
  • 0
  • 6
  • 33
  • 74
  • 502
  • 0
  • 0
  • 0
  • 1
  • 19
  • 0
  • 0
  • 0
  • 2
  • 0
  • 0
  • 7
  • 0
  • 0
  • 0
  • 0
  • 8
  • 6
  • 84
  • 21
  • 2
  • 5
  • 7
  • 10
  • 5
  • 0
  • 14
  • 0
  • 0
  • 0
  • 0
  • 1
  • 1
  • 0
  • 28
  • 0
  • 7
  • 1
  • 0
  • 0
  • 6
  • 0
  • 77
  • 0
  • 0
  • 0
  • 6
  • 2598
  • 6
  • 0
  • 0
  • 7
  • 0
  • 5
  • 0
  • 5
  • 9
  • 0
  • 0
  • 10
  • 0
  • 6
  • 3
  • 8
  • 0
  • 2
  • 0
  • 0
  • 3
  • 0
  • 1
  • 0
  • 9
  • 60
  • 0
  • 0
  • 0
  • 2
  • 248
  • 2
  • 22
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 28
  • 8
  • 0
  • 842
  • 17
  • 3
  • 0
  • 3
  • 2
  • 108
  • 0
  • 90
  • 3
  • 1
  • 6
  • 0
  • 0
  • 1
  • 0
  • 0
  • 2
  • 0
  • 0
  • 0
  • 2
  • 7
  • 4
  • 1
  • 1
  • 0
  • 0
  • 18
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 12
  • 0
  • 0
  • 1
  • 1
  • 1
  • 5
  • 0
  • 2
  • 0
  • 0
  • 0
  • 1
  • 38
  • 6
  • 0
  • 14
  • 34
  • 0
  • 5
  • 0
  • 25
  • 0
  • 1
  • 0
  • 1
  • 0
  • 0
  • 0
  • 9
  • 25
  • 15
  • 1
  • 1
  • 4
  • 9
  • 0
  • 0
  • 0
  • 0
  • 0
  • 1
  • 0
  • 6
  • 1
  • 5
  • 1
  • 0
  • 16
  • 0
  • 2
  • 6
  • 0
  • 0
  • 34
  • 14
  • 0
  • 79
  • 4
  • 0
  • 0
  • 10
  • 35
  • 0
  • 67
  • 0
  • 1
  • 12
  • 0
  • 0
  • 0
  • 0
  • 3
  • 67
  • 0
  • 0
  • 0
  • 6
  • 33
  • 74
  • 502
  • 0
  • 0
  • 0
  • 1
  • 19
  • 0
  • 0
  • 0
  • 2
  • Capacity
  • 2414
  • 2675
  • 2321
  • 2366
  • 2414
  • 2675
  • 2321
  • 2366

Certificate

  • Product Certificates
    Solar
0 Suppliers

Founded in Germany during 1993 LORENTZ has pioneered, innovated and excelled in the engineering and manufacturing of solar powered water pumping. We design, develop and manufacture the widest range of solar pumps of any company. Mechanical, electronic and software design is all in-house with a specialized team that have been working in solar pumping for 20 years. Our design activities are focused in our Global Headquarters and Technology Center [...]

  • Solar Water Pump
  • Germany
  • Germany

Germany

What is Solar Energy in Germany?

Germany, despite being a sun-drenched country has been considered as one of the highest solar power outputs around the world and still possesses the most advanced and latest research about solar energy and has many new industry actors. Moreover, they’re expecting for the second wave of solar power expansion, which will soon bring success and progress for the solar technology’s full systemic integration.

For several years, Germany has been considered as the world’s top PV installer among other countries. At the end of the year 2016, Germany managed to build a total installed solar power capacity of 41.3 gigawatts (GW) which was behind China’s solar capacity.

Most solar power in Germany exclusively consists of photovoltaics (PV) systems only. Germany has only a little interest in concentrated solar power (CSP) for it does not use photovoltaics and this solar technology requires much higher solar insolation as compared to the PV system. However, there is still an experimental CSP-plant with 1.5 MW capacity which is being used solely for on-site engineering purposes only rather than for commercial electricity/power generation. This concentrated solar power is called the “Jülich Solar Tower” that is owned by the German Aerospace Center.

Moreover, in 2014, Germany managed to install about 1.5 million photovoltaic systems across the country which are ranging from small rooftop solar power systems to medium commercial and large utility-scale solar plants and farms. The largest solar farms of Germany are located in Neuhardenberg, Templin and Meuro with solar capacities of over 100 MW. Moreover, these PV technologies were accounted for an estimated 6.2 to 6.9 percent of Germany’s net electricity generation in the year 2016.

However, new installations of photovoltaic systems have slowed down steadily since the beginning of the year 2011. Also, it was estimated in the year 2017 that over 70 percent of the employment in the solar industry of the country have been lost in recent years. Solar power in Germany has gone through rough times since it has been started in the wake of Germany’s Renewable Energy Act in the year 2000. However, German companies quickly loomed to global leadership in solar power technology before a collapse in the solar industry happen and some of the companies were forced to hold their businesses.

Proponents from the Photovoltaic industry blamed the government for its lack of commitment in the said industry, while others point out that the loss of jobs in the solar sector is due to financial burden that was associated with the fast-paced launching and manufacturing of photovoltaics, which in their perspective was very unsustainable to the transition of renewable energies.

With all of these, still, the official governmental goal of Germany is to continuously improve and increase the contribution of renewable energy to the country’s overall electricity generation and consumption. By 2020, Germany is aiming for a long-term minimum target of 35 percent capacity, 50 percent by 2030 and around 80 percent power capacity by the end of 2050.

Currently, the country is significantly producing more electricity at specific times with high solar irradiation than the country’s needs, slowing down spot-market prices and exporting the country’s electricity surplus to nearby countries. In 2014, the record of exported electricity surplus reached almost 34 TWh. The decline of spot-prices in the market may raise the electricity prices for retail customers, as the expansion of the guaranteed feed-in tariff and spot-price increases as well.

As the combined share of fluctuating wind and solar energy is nearly achieving 17 percent of the national electricity mix, energy issues and problems are also being prevented and others becoming more manageable. This is because of the electrical grid adaptation, new grid-storage capacity construction, reduction of fossil fuels, altering of nuclear power plants and constructing a new generation of combined heat and power plants. Today, nuclear power and brown coal are the cheapest suppliers of electricity in Germany.

Solar Water Pump used for below projects in Germany

No Projects Found

Solar Water Pump

Solar water pump definition

A solar water pump is a mechanical pump powered by electricity generated using photovoltaic panels. It is popularly referred to as a solar water pumping system because it requires several key components to work. The critical constituents of a functional water pump include; 

  • A solar panel array
  • A mechanical DC water pump
  • Photovoltaic cables
  • A fuse box
  • A solar charger control

You can employ a solar water pump in various applications, including crop irrigation and drinking water supply. Currently, it is the most suitable option for all your pumping needs because it has several benefits. It is essentially more efficient to operate and less costly to maintain than traditional fossil fuel-powered pumps. More importantly, it is environmentally friendly primarily because it runs on renewable solar energy. How exactly does it work?

The solar water pump’s working principle 

When most of us hear of a solar water pump, we assume it is pretty challenging to use. I can confidently tell you that its usage is pretty straightforward once you install all the necessary components. Figure 1 below offers an outline of the main things you need to have in place for your solar water pump to work efficiently;

Figure 1: Components of a functional solar water pump system

The solar array absorbs solar energy and converts it into electric energy. The solar water pump’s inverter converts the DC  electric current output generated by the photovoltaic system into AC. The AC electric current powers the pump and propels water from the source to the intended destination. 

It is also crucial to note that the inverters regulate the electricity output frequency and voltage instantaneously. These regulatory actions correspond to variations in sunlight intensity. In simple terms, the system switches to supplementary energy automatically when sunlight intensity weakens. Is this not enough to convince you that a solar water pumping system is worth its investment?

Classifications of solar water pumps

There are several classifications of solar water pumps that you can choose from depending on your specific needs. The main varieties of solar water pumps include;

  • The submersible solar water pump

This type of pump is ideal for deep water sources such as wells. It can lift up to 650 feet of water provided the sunlight energy can generate sufficient electricity to power the pump. Consequently, it is advisable to pump and store water when the sun’s intensity is at its best.

  • The surface solar water pump

This pumping system is suitable for shallow water sources, including streams, storage tanks, and ponds. They can comfortably lift water with a depth of not more than 20 feet. If you intend to draw water beyond this depth, it would be best to settle for submersible pumps.