app dload The New Drivers of Energy Consumption

The New Drivers of Energy Consumption

trnsmission line blue1 1024x682 The New Drivers of Energy Consumption

Again, this post is to tide you over until I finish my analysis of energy consumption in the OECD in 2030, which is only a day or so away from completion.

Much of the conversation I have seen (and what I’ve written) about energy consumption is about adoption of current technology by people in developing countries. As they get modern houses, cars, appliances and computers, it will increase energy consumption.

I have not seen much discussion of new ways of consuming energy. The last big driver of consumption seriously talked about was data centers, now estimated to consume 2% of U.S. electricity, I believe. But that’s not really new any more.

As a committed ‘Kurzweilian’, I’ve bought into the dream (if it’s an illusion, please just don’t wake me up) that three technologies will transform this century:  Nanotechnology, biotechnology and robotics. Ray Kurzweil has put forth the proposition that they will combine and advance so dramatically that it will put the development of electricity to shame. I think he’s right.

How will those technologies affect energy consumption?

I think the primary effect will come from robotics. It will take a lot of industrial energy just to manufacture them, of course. But once they take hold in a society, I think we will find more and more things for them to do, and running the darn things will consume energy as well. Whether robots end up being general purpose handymen or planted performers of a specific task, I fully expect robots to use as much energy as we who created them. And I expect for there to be a lot of them–maybe more of them than there will be of us.

This might be balanced by nanotechnology, which will, as the name implies, tend to make things smaller and lighter. We’ll still need industrial qualities of energy to create the products, but once in use they should use less energy than the objects and materials they replace. Cars should get even lighter, that kind of thing. And nanotechnology will certainly be used to make robots lighter and more efficient, because (in my own opinion) the big driver of robotics will be healthcare–and I’m not talking about robotic caregivers. Robotics will be the key driver in the development of prosthetics, and the size constraints of the limbs they replace will make any size advantages worth the expense.

As for biotechnology, for now it seems that its primary impact on the energy scene will be as potential augmentation of biofuels, making them more potent and less space consuming. And I think that’s going to be a real challenge–but the stakes involved mean that many are already trying for it and one or more will probably succeed.

Of course none of these three technologies address the toy that we all want to burn energy on–passenger flying cars… but as soon as those are built the engineers will get to work on making them more efficient…

Original Article on 3000 Quads

Leave a comment